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Abstract. The dynamics of learning from examples in the K = 3 non-werlapping committee 
machine with single presentation of examples is studied. ?he optimal algorithm. in the sense of 
mean generaliwtion, is obmined from a variational analysis of the differential equations which 
describe the dynamics. The agreement of the theoretical predictions and the results of numerical 
simulations is excellent. The optimized dynamics has the extra advantage with respect U, the 
non-optimized cases in that it uncouples the differential equations which describe the evolution 
of the relevant panmeters, i.e. the student-teacher overlap and the norm of the srudeni synaptic 
vector. This, in h" translates into the possibility of constructing useful practical optimized 
on-line algorithms. For the optimal algorithm the generalization error decays as -0.88u-', the 
m e  nominal e m r  as for the simple perceptron with optimized dynamics. 

1. Introduction 

The application of the methods of statistical mechanics to the study of learning and 
generalization in perceptrons with no hidden units has yielded a wealth of results which 
lead, in a natural way, to the study of more realistic and complex nets. The feedforward 
nets with a layer of hidden units connected through fixed weights to the output layer have 
been the natural candidates to continue the study of neural networks. 

The supervised learning process can typically be cast as a problem of minimizing some 
energy function constructed from a set of examples. This minimization leads naturally 
to a learning dynamics. If this minimization is performed in the presence of noise then 
the problem is that of statistical mechanics at finite temperature. Thus the learning 
algorithms describe a sequence of steps which tend to minimize a free energy. In the 
iterated form, these algorithms extract all the information contained in the a priori given 
energy function. From a practical point of view, this might be a computationally expensive 
operation. For the perceptron with no hidden units it has been shown that if the dynamics is 
properly chosen, then the first step of the minimization leads to an asymptotic decay of the 
generalization errors that is almost as good as the exhaustive iterated learning. For example, 
the generalization error in the case of the Boolean perceptron with real weights decays as 
0.880r-', compared to the Bayesian bound of Opper and Haussler 1121 of 0.44c(-'. In the 
case of learning by queries, by judiciously choosing the energy function, the error can be 
made to decay exponentially fast [7]. 

The main point of the above discussion is that by correctly choosing the dynamics, the 
computational effort of learning can be drastically reduced. The on-line learning by single 
presentation of examples, which lately has been studied by several authors [10,8,5, I], can 
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thus lead to very efficient learning algorithms. In the case of nets which are not very useful 
in real-life applications this might not be very important. This is not the case for nets with 
hidden units, where any reduction in the training times or improvement of performance will 
certainly be welcomed, and which are applicable in a large number of real problems. 

The object of this paper is to study the single presentation of example algorithms which 
lead to the best possible generalization (in the mean) in the committee machine with a 
non-overlapping architecture. The method generalizes to nets with hidden units-see [SI. 

In section 2 the model is presented, an expression for the generalization error as a 
function of the overlaps is obtained and the equations governing the evolution of the order 
parameters for a general algorithm are deduced. In section 3 we obtain the optimal weight 
function through a variational argument. This leads to an algorithm which belongs to the 
class of the ‘expected stability’ algorithms [81. In section 4 the theoretical results, obtained 
by numerical integration of the evolution equations are compared to the results of numerical 
simulations. Section 5 contains some concluding remarks. 
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2. T h e  generalization error a n d  the learning dynamics 

Since we are interested in the problem of generalization or rule extraction within the 
framework of supervised learning, we build a learning set with the help of a teacher network 
[3,4], which for simplicity we take to have the same architecture as the student net. 

The  K non-overlapping committee we deal with is a set of K independent Boolean 
perceptrons or branches with NIK inputs units each. The notation we use is such that 
every N-dimensional vector V can be thought of as K branch-vectors V = (VI,  . . . , VK). 
We will restrict ourselves to the K = 3 case. 

The learning set is a set of P pairs {(S, 08)) where S = (SI, Sz, S3) with S k j  = i l .  
k = I ,  2.3, j = 1, . . . , N / 3  and UB is the teacher output (see equation ( I )  below). The 
synaptic weights of the teacher are denoted by B = (BI, Bz, B,) and the normalization E,=, NI3 Bkj 2 - = Bk z - - I can be imposed without loss of generality. 

Upon presentation of an input vector each branch perceptron gives a partial output 

crBk = sign(bk) k = I ,  2 , 3  

where bk 
teacher net. The teacher’s final output is made up from the internal representation 

B k s k .  The set ( U B k )  is the unaccessible internal representation of S in the 

u~ = sign(B) ( 1 )  
where B _= E:=, U B ~ .  The student net is defined by a vector of real connections J and an 
output 

U, = sign(‘H) (2)  
3 where ‘H U J ~  and 

u,k = sign(hk) k = I .  2 , 3  

hilEJk.Sk/lJiI. 

The aim of training the net is to obtain J ,  using information from the learning set, such that 
U, is near in some sense to ug.  The meaning of ‘near’ here is in the sense of generalization. 
that is, we should find J which maximizes the probability of U B  = U, upon the presentation 
of a random input vector, uncorrelated with the learning set. That probability is called the 
generalization ability (g) and its complement is called the generalization error (eg). 
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We deduce now the generalization error as a function of the overlaps p k  = JK .Bk/Jk Bk, 
where Jk z IJKI. For given B and J ,  the generalization error is the average, over random 
examples, of 

1 - sign(W)sign(B’) 
2 

e[ = 

which is the error of classification of a single example (labelled by the p index) (Sf, U,”). 

The average over the examples can be written as 

dB”P (‘H”, B”)e[ = / 1 +m +m 
d‘H’ P (K”, B”) dK’dB’ . s = . L  L wLw<o 

where, supressing the f i  index for simplicity, 

and 

which comes from the Gaussian correlated distribution of the internal fields of both the 
student and teacher branch perceptrons, as shown by Mato and Parga [ I  I]. 

Defining C* = cos(x i y), we have 

+(e lgzg i  + giezg3 + g l g z e d C : C -  + (glgzg3)c: l  

eg = (e leze , )  +  el + e2 + e3 - elez - e1e3 - eze3) .  

Collecting terms with ‘HB < 0 we get 

(5 )  I 

This result expresses the geometrical relation between the generalization error and the 
overlaps. 

The evolution of the overlaps during the learning process is obtained from the learning 
algorithm prescription of how the synaptic weights are modified upon presentation of a new 
example, which we take as the most general linear and synchronous dynamics: 

where Fk(p) defines the algorithm and Q&L) just rescales the norm of Jk. In the N + 00 

limit we  have the following equations: 

where a = p / N  is the number of presented patterns per adjustable network weight. 
Averaging over random examples and taking the mean values pk and Jk as approximations 
(which will turn out to be very good) for ,oh(&) and J k ( , u )  we get the mean evolution 
equations: 
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where Dp stands for the measure over random patterns. 
The dynamics is described by 2K = 6 variables p ~ ,  pz, h, J I ,  Jz,  J3 and by the initial 

conditions. The optimization procedure of the next section will uncouple the p set from the 
J set, leading not only to better performance but also to a simpler to analyse dynamics. 

3. Dynamics optimization 

From equations (5) and (4) it can be seen that minimization of e, is obtained by maximizing 
the increase in the overlaps px’s for each newly presented example. A simple variational 
method applied to (7) leads to the optimal weight F;. given by 

where the /I index will be dropped for simplicity. However, the values of { b j )  are not 
known. Define a new weight kk in which the unaccessible variable bk is replaced by some 
unknown function 6 which may depend on anything but the bj’s, i.e. 

Inserting 4 into (7) we get 

where we have used the shorthand 

/ D I L ( . . . ) =  O F l l  J P ( b k l u ~ , ( h , t ) P ( u ~ . ( h j ) ) d b x  

After integrating on bk, variational optimization on the fk function leads to 

fx‘ = (bk)k 

where the brackets (. . . Ik stand for the average of br given U B ,  ( h i } ,  i.e. average over the 
posterior distribution probability 

We have thus obtained the accessible optimal weight 

The meaning of this result is clear. The optimal weight that should be attached to a new 
example depends on bk (equation (9)). This, however, does not comply with the rules of the 
game and the next best thing that can be done is to replace bk by the expected value (bk)k.  
Another point that might be raised is that the overlaps Pk’S are not accessible either. There 
are several ways out of this problem. The first and most obvious one is to obtain the value 
of p ~ ( l u )  by integration of the evolution differential equations. This leads to mean-field- 
type lower bounds on the generalization error. A second way out of the p-problem has 
been suggested for single-layer percept” [9], where a self-adaptive algorithm estimates 
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the value of p from a measure of the performance on the last few examples. We will 
now see that the optimization procedure will grant the possibility of a third solution, much 
more elegant and appealing than the previous two, especially from the point of view of 
applications. 

In the special case where the examples are independent identical uniformly distributed 
random variables, and for the non-overlapping architecture which allows for branch 
factorization, we have 

where 

Taking advantage of the symmetry of the problem, we now calculate P(uB,  b l ,  ( h j ) ) :  

where 8 is the Kronecker delta-function. Introducing hk = prim i t  can be easily 
shown from (13) that 

where the H function is 

H ( x )  = - e-r=/2 dr . 

Integrating over b,  we obtain 

P ( o B ~  ( h j l )  = Po(~I)Po(~z)Po(~~ 
X[H(-?)H(-+$ + H(-?)D($ (17) 

Ak fhk, we finally arrive at the Introducing further simplifications in the notation, yk 
result 

We are able now to evaluate the optimal weight. according to (12). Straightforward 
calculations using (13), (16) and (18) yield 
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where 
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Note the very interesting fact that although the initial dynamics, as described by (6), did not 
include the traditional Hebbian term, i.e. U S $ ,  the optimization procedure led in a natural 
way to its appearance, since the modulation function h has a US factor. We thus arrive at a 
highly non-local learning rule, where information from the stabilities of the other branches 
is needed in order to perform the update of the synaptic couplings of a given branch. Any 
algorithm which does not use such non-local information would necessarily have a poorer 
performance. 

Inserting result (19) in the mean evolution (7), we see that the optimization procedure 
left the pI equation uncoupled from the [Jk] equations. Integrating over bi and summing 
over uB we obtain 

where Dx is the Gaussian measure 

and 

Inserting the optimal weight in (8), the choice S2, = 0 leads to the equation for the evolution 
of the branches norms 

so that, as can be seen from (21) and (23), 

Jk (a) = C Pk@) (24) 
where c is a constant and we can self-consistently choose c = 1, since enters the J, 
dynamics (23). Such a choice leaves these two equations uncoupled and, what is even more 
interesting, identical. This means that, in the mean, 

Jk(U) = Pk(a) (25) 

as long as Jk(0) =.a@). 

4. Results and simulations 

The branch permutation symmetry displayed by the set of differential equations (7) or 
(21) allows for a branch symmetric solution whenever the initial conditions are themselves 
symmetric, i.e. pk(a = 0) is independent of k. The generalization error (5) can be obtained 
once the overlaps have been obtained by numerically integrating equation (21). The result 
is shown in figure 1 (lower full curve). The symbols represent the results of two different 
numerical simulations which were performed as follows. The first type of simulation 
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Figure 1. Theoretid results (full curves) and simulations (symbols) for the pseudo-Hebb (upper 
curve) and expected stability (lower curve) algorithm. N is the number of Boolean input units 
and n is the number of networks used for obtaining lhe mean PA'S. Standard error bars would 
be approximately the same size of the symbols. See text for details. 

(represented in figure 1 by diamonds) uses the value of p(or) obtained from the numerical 
integration of (211, in evaluating the weight function fi: 

where D(a) and i k  = J k  . Sk. The second type of simulation (represented 
by circles) is done using the decoupling property of the optimized dynamics and instead of 
using the Q priori known value of p(a) it uses the accessible values of the norms (Jk)  as 
measured during run time. That means that the weight function is 

where Dk 3 4 1  - J l  and in this case the value of J k  in each step is measured and used. 
The fact that both simulations give rise to identical results, within error ban, shows that 
the last algorithm is immune to the fluctuations in the values of J k .  In this form we have a 
perfectly well defined and applicable algorithm. 

Still in figure 1, and for the sake of comparison, we present the theoretical results 
accompanied by those of simulations, for what we dubbed the pseudo-Hebb algorithm. 
This is just a generalization of the Hebb rule to the committee machine. The Hebbian 
rule uses a weight function independent of the pos-synaptic fields (ha). If we allow for a 
possibly varying step size, as a function of or but not of the stabilities, the most general 
weight function, within what might be called the pseudo-Hebb class, is given by 

FPH - k - U B w k ( a ) .  

Insertion of weight (28) in (7) and (8) gives 
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dor 
The function W;(or) that optimizcs dpxlda is 

in which case the overlaps' and the vector norms' dynamics are given by 

The initial condition p ( 0 )  = 0 leads to 

(30) 

The weight function (31) is an awkward expression of a constant value! It is remarkable 
that optimization of Wk, in the sense of mean generalization, gives Wk(or) = constant, that 
is, an optimal weight independent of or. An analogous result has  been previously obtained 
in [6] for the Boolean perceptron with no hidden layers. This can be seen from (31)-(33), 
from which one easily obtains 

d d d - dor In (9) = -- dor In(Jk) + d a  -w;(or) = 0 ,  

Result (34) and equation (5) yield an asymptotic error e:H mor-'/z. This should 
be compared to the error decay of the optimized algorithm which gives, for large a, 

where 

KO e6 n. - 
or (35) 

This is exactly the same nominal error of the expected stability algorithm for the perceptron 
with no hidden layers. 

The above results (equations (35) and (36)) for the asymptotical behaviour of the 
generalization error arise from (21) in the limit p i  = p + 1 (1 + 0). The ssymptotical 
behaviour of the three-dimensional integral can be obtained by a single change of variables, 
namely x ,  = h l / h l ,  for the first branch. The contribution for the integral of the quadrants 
with hzh3 < 0 can be easily seen to be ~ X / K O ,  while for hzh, > 0 the integral is of higher 
order in h,  thus being disregarded. 

5. Conclusions 

The analysis of the optimal weight function (19) yields some very interesting results. This 
analysis is based on the interpretation of the weight function as a measure of the information 
value of a new example, as judged from the previous experience of the student network 
acquired during the learning process. Two elements govern the behaviour of  the weight 
function. In the first place, it depends on the error of generalization through its dependence 
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on the pk’s. This means that the synaptic couplings will be changed differently depending on 
whether the net is in an advanced stage of learning or just beginning. These remarks are the 
basis of the construction of a self-adaptive algorithm, along the lines of [9]. Figure 2 shows 
the weight function dependence on the branch stability AI in the special case where A2 = 
-3 and A3 = 3, for different learning stages as parametrized by the overlaps ph. Note the 
evolution of FI from a flat, pure pseudo-Hebbian (i.e. constant) weight at the beginning of the 
process to a highly structured function of the stability A1 at later times. The second element 
is what might be dubbed the element of surprise of a new example. Consider figure 3, where 
the weight function (rescaled by l / G )  is shown as a function of y~ = Alp.1 for 
various values of the pair y2 and y3. By presenting the values in such a rescaled form we 
can analyse the effect of the surprise factor independently of the stage of learning. Notice 
that if a given branch variable yk is positive that branch gives a contribution which agrees 
with the teacher output. In general, if the internal representation agrees with the teacher then 
no major change in the synaptic couplings is performed. However, and especially when 
the other two branches disagree (either between themselves or with the teacher), the cases 
with y I  c 0 lead to recognizing a surprise and thus performing a major synaptic change. 
However, if y~ gets to be even more negative than yz and y3, then the increased confidence 
of being correct, although with uJI = --OB, leads to a decrease in the weight function as if 
this meant that the blame for a wrong classification lies somewhere on the other branches. 

A point that deserves to be mentioned is the fact that as in all the optimized on- 
line dynamics for spherical perceptrons [6,8,9], the energy function per example which 
characterizes the gradient descent dynamics learning algorithm is related to the conditional 
probability P(usl(hj])  by 

E = -hZ In P ( U g I ( h j ] ) .  

In conclusion the study of the learning dynamics of a net with three hidden units has 
led to algorithms that can be used in a practical learning task where this architecture is 
suited. The uncoupling of the p and J variables due to the optimization procedure rids 
the algorithm from unknown parameters and yields a weight function that can be evaluated 
with the available information. The above results were obtained for the case K = 3. It 

Figure 2. Optimal weight function for the first branch in the symmetrical situation where 
p, = m  = p3 = p ,  
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Figure 3. Rescded optimai weight function (I - p2)-'n IF, I against rescaled stability 
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remains to ask to what amount they are representative of the general K machine, and 
how involved would their derivation be in the general case. Preliminary results 121 show 
that the general features of the K = 3 case remain true in the general case. The more 
general problem of two-layer networks deserves further study not only from a theoretical 
point of view but also due to its many possible applications. The optimization techniques 
we have studied here can be extended to more realistic nets and will possibly be useful 
due to the effectiveness and simplicity of on-line optimized algorithms. The problem of 
more general example distributions can be dealt with in a similar fashion and problems 
of catastrophic interference can probably be successfully overcome by the use of these 
adaptative procedures. 
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